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We present an experimental study of the infrared conductivity, transmission, and reflection of a gated bilayer
graphene and their theoretical analysis within the Slonczewski-Weiss-McClure �SWMc� model. The infrared
response is shown to be governed by the interplay of the interband and the intraband transitions among the four
bands of the bilayer. The position of the main conductivity peak at the charge-neutrality point is determined by
the interlayer tunneling frequency. The shift of this peak as a function of the gate voltage gives information
about less known parameters of the SWMc model such as those responsible for the electron-hole and sublattice
asymmetries. These parameter values are shown to be consistent with recent electronic structure calculations
for the bilayer graphene and the SWMc parameters commonly used for the bulk graphite.
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I. INTRODUCTION

Since the monolayer graphene was isolated1 and shown to
exhibit the quantum Hall effect2,3 a few years ago, ultrathin
carbon systems have attracted tremendous attention.4 Their
electron properties are quite unique. Monolayer graphene has
a vanishing Fermi point at the Brillouin-zone corner and
low-energy quasiparticles with a linear spectrum ��k�
= �v�k�, which obey a massless Dirac equation. Here k is
the deviation of the crystal momentum from the Brillouin-
zone corner �K point�, v= �3 /2��0a /� is the quasiparticle
velocity, �0 is the nearest-neighbor hopping parameter, and
a=1.42 Å is the carbon-carbon distance. Graphene is the
basic building block of other types of carbon materials. In-
deed, the first calculation of its band structure by Wallace5

was motivated by his studies of graphite. Extending that
work, Slonczewski and Weiss,6 McClure,7 and others8 devel-
oped the now commonly used Slonczewski-Weiss-McClure
�SWMc� model for the low-energy electron properties of
graphite. This model is equivalent to a tight-binding model
with seven parameters. Four of them are illustrated in Fig.
1�a�: �0, the in-plane hopping between nearest-neighbor at-
oms; �1, the hopping between the two stacked sublattices of
adjacent graphite planes; �3, the hopping between the two
unstacked sublattices of adjacent planes; and �4, the hopping
between a stacked sublattice in one plane and the �unstacked�
neighbors of its stacking partner in the adjacent plane. Pa-
rameters �2 and �5 �not shown in Fig. 1�a�� are analogous to
�3 and �4 except they connect next-nearest-neighbor planes.
Finally, parameter �, discussed in more detail later, is
related9 to the on-site energy difference of the stacked and
the unstacked sublattices.

The SWMc model has proven to be a very useful analyti-
cal tool. It permitted theoretical calculations of a vast num-
ber of properties of graphite, including its diamagnetic sus-
ceptibility, de Haas-van Alphen effect, magneto-optical
response, cyclotron resonance, and so on. These properties
were actively studied experimentally until the late 1970s and
lead to accurate estimates of the principal SWMc parameters

�0–�3. Still, it is proved challenging to unambiguously de-
termine the remaining three SWMc constants �4, �5, and �,
which are measured in tens of meV.

For illustration, in Table I we list inequivalent parameter
sets from the latest original sources Refs. 12 and 13. Subse-
quently, the issue was further confounded by numerous mis-
prints in reference books and reviews.21–25 The density-
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FIG. 1. �Color online� �a� Crystal structure of the graphene bi-
layer with the relevant SWMc hopping parameters shown. �b� Band
structure of a biased bilayer �lines�, which can be considered as
hybridization of two shifted Dirac cones �dots�. Numbers on the
right label the four bands. �c� Examples of the allowed optical tran-
sitions for the chemical potential indicated by the dashed line. Oc-
cupied states are shown by the thicker lines. The dots and the ar-
rows mark the initial and the final states, respectively, of the
transitions that produce features at frequencies Ej, j=1,2 , . . . ,6 in
Fig. 2�a� below. E0 is the intraband transition �Drude peak�.
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functional theory calculations,14,15,17 which normally have an
accuracy of �0.1 eV for quasiparticle dispersion, have not
yet settled this discrepancy.

In view of the reinvigorated interest to graphene, it has
become an important question to obtain the SWMc constants
for a few layer graphene and also to compare them with
those for bulk graphite. Thus, some difference between the
graphite and a graphene bilayer was recently reported based
on the analysis of Raman scattering.10 Several ab initio cal-
culations of these parameters for the bilayer have also been
done.11,18–20,26 Unfortunately, they have not explicitly dis-
cussed the less accurately known SWMc parameters.

The bilayer is a system intermediate between graphene
and bulk graphite. Its lattice structure �for the case of the
Bernal or AB stacking� is illustrated in Fig. 1�a�. The corre-
sponding band structure,27–29 shown in Fig. 1�b�, consists of
four bands. These bands arise from splitting and hybridiza-
tion of the Dirac cones of the individual layers by the inter-
layer hopping matrix element �1 and by the electrostatic po-
tential difference V between the two layers.27,30 The latter
can be controlled experimentally by varying the voltage Vg
of a nearby metallic gate31,32 or by doping.33 This degree of
tunability makes the bilayer graphene an extremely interest-
ing material for both fundamental study and applications.

In this paper we show that �1, v4��4 /�0, and � can be
directly extracted from the dynamical conductivity measured
in zero magnetic field. This is in contrast to the bulk graphite
where determination of the SWMc constants was never
straightforward and almost invariably required the use of
strong magnetic fields.

The dynamical conductivity ���� is determined by the
six possible transitions among the four bands �see Fig. 1�c��.
They have energies of the order of a few 10−1 eV, which is
in the infrared optical range. Recently, experimental mea-
surements of the infrared response of the bilayers have been
carried out by our34 and other35,36 groups. Below we identify
and explain the key findings of these experiments based on
how different combinations of the interband transitions are
either activated or suppressed by the Pauli exclusion prin-
ciple. Our theory enables us to reach a quantitative agree-
ment with the experiment using SWMc �0, �1, �4, and � and
also the phenomenological broadening constant � as adjust-
able parameters. The values of the SWMc parameters that
give the best fit are given in the second column of Table I.
Note that the next-nearest-layer hopping parameters �2 and
�5 are irrelevant for the bilayer. The parameter �3 cannot be
reliably estimated from these particular experiments because
it has an effect similar to the simple broadening ��� in the
range of carrier concentrations suitable for our analysis.

Previous theoretical studies of the optical conductivity of
bilayer graphene28,29,37–39 used a simplified model in which
only �0 and �1 were taken into account. This model success-
fully explains the major features of ���� as well as its de-
pendence on the gate voltage Vg, and we qualitatively sum-
marize it as follows. Conduction and valence bands are
symmetric. In the absence of the electrostatic potential dif-
ference V between the layers, the two conduction �valence�
bands have the same shape and are shifted by �1. Except the
range of very small momenta k, their shape remains nearly
identical even in the presence of a finite V. As a result, there

TABLE I. The SWMc parameters �in eV� according to previous and present works. The numbers in parentheses are the reported accuracy
of the trailing decimals. “Expt.” and “DFT” stand for experiment and density-functional theory, respectively.

SWMc parameter

Graphene bilayer Graphite, early work Graphite, recent work

Pres. work Expt.a DFTb Expt.c Expt.d DFTe DFTf Expt.g DFTh

�0 3.0i 2.9 2.6 3.16�5� 3.11 2.92 2.598�15�
�1 0.40�1� 0.30 0.3 0.39�1� 0.392 0.27 0.364�20�
�2 0.0j 0.0j 0.0j −0.020�2� −0.0201 −0.022 −0.014�8�
�3 0.3i 0.10 0.3 0.315�15� 0.29 0.15 0.319�20�
�4 0.15�4� 0.12 0.044�24� 0.124 0.10 0.177�25�
�5 0.0j 0.0j 0.0j 0.038�5� 0.0234 0.0063 0.036�13�
� 0.018�3� 0.01k −0.008�2� −0.0049 0.0079 −0.026�10� 	0.01 l −0.037 m

��=�−�2+�5 0.018�3� 0.01k 0.037�5� 0.0386 0.0362 0.024�18�
aReference 10.
bReference 11.
cReference 12.
dReference 13.
eReference 14.
fReference 15.
gReference 16.
hReference 17.
iThis value cannot be very accurately found from our analysis and is instead adopted from the literature.
jPhysically irrelevant in the bilayer but should be set to zero for calculating �� from �.
kOur estimate based on digitizing band dispersion graphs published in Refs. 11 and 18–20.
lAbsolute value only.
mThe negative sign �omitted in Ref. 17� is required for consistency with the conventional definition �Ref. 7� of �.
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is a high optical density of states for transitions between the
two pairs of bands at frequency �1 /�, which gives rise to a
sharp peak in the real part of the conductivity Re ���� at
�=�1 /��3200 cm−1 �using �1=0.40 eV�. Other transi-
tions give more gradually varying contributions to Re ����,
eventually leading to the asymptotic “universal”
value28,29,37–41 �=e2 /2� at high frequency �which is twice
the value for the monolayer42�. Finally, in real graphene sys-
tems the conductivity features are never sharp because of a
finite lifetime due to, e.g., disorder scattering. This broadens
the peaks and can also merge together several features that
are close in energy �see Fig. 2�.

Our recent infrared experiments34 as well as measure-
ments by another group36 have largely confirmed this picture
but also found features that cannot be explained within this
simple model. In particular, the conductivity peaks on the
electron and the hole sides are displaced in energy from �1
by about 10% in opposite directions. �Electron and hole dop-
ing is identified with, respectively, positive and negative

V=Vg−VCN, where VCN is the gate voltage at which the
bilayer is tuned to the charge-neutrality �CN� point.�

In order to investigate the origin of these features in this
paper we carry out a combined experimental-theoretical
study of the infrared response of a bilayer graphene. We
attribute the observed electron-hole asymmetry to the effect
of �4 and �. We find that including these parameters is es-
sential for a more accurate discussion of ���� of the bilayer.
Besides differences in the optical response, �4 and � also
make effective masses for electrons and holes unequal,43 in
agreement with the findings from the Raman scattering.10

In our experiments, we have measured the optical reflec-
tion R�� ,Vg� and transmission T�� ,Vg� as functions of the
frequency � and the gate voltage Vg. From R and T we
extracted the real and imaginary parts of the conductivity.44

Some of these experimental results were reported
previously.34

In this paper we present more extensive experimental data
and we also compute the same three quantities �, R, and T
theoretically. The calculation requires accounting for the in-
terplay of several physical phenomena: �a� electrostatic
charging of the layers, �b� their dynamical conductivity, �c�
disorder, and �d� the optical properties of the environment
�sample, substrate, and the gate�. Each of these ingredients
has been studied in the past.28,29,31,37–39,45,46 Here we carry
out all these calculations in a single paper albeit we include
disorder broadening in a very simple way. This enables us to
directly compare our theoretical results with the measure-
ments.

The remainder of the paper is organized as follows. In
Sec. II we summarize our results. Theoretical derivation is
outlined in Sec. III. Section IV contains comparison of the
theory and experiment, discussion, and conclusions. Some
calculational details are relegated to Appendixes A and B.

II. RESULTS

To measure the optical response of the bilayer we em-
ployed synchrotron infrared radiation, as described
previously.34,47 Understandably, the two-atom-thick sample
has a rather small optical signal. The quantity which can be
extracted most reliably from the current experiments is the
relative transmission T�� ,Vg� /T�� ,VCN� and reflection
R�� ,Vg� /R�� ,VCN�. All measurements were done at the
temperature of 45 K. The data for the largest �
V�= �Vg
−VCN� are depicted in Fig. 3. The main feature in the relative
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FIG. 2. �a� Real and �b� imaginary parts of
conductivity in units of �0=e2 /� for the gate
voltage 
V=−100 V. The solid curves are for
broadening �=0.02�1. The dashed curve is for
�=0.002�1.
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FIG. 3. �Color online� Relative transmission: �a� theory and �b�
experiment. Relative reflection: �c� theory and �d� experiment. The
solid line is for electrons, 
V� +80 V. The dashed line is for
holes, 
V�−80 V. The experimental uncertainties are �0.002
�0.2%� at � near 3000 cm−1 and �0.5% at high frequency.
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transmission spectra is a small but clearly visible dip around
�=3200 cm−1. Away from the dip, the relative transmission
is slightly higher than unity. The relative reflection spectra
are characterized by a dip-peak structure. Transmission and
reflection spectra are asymmetric between positive and nega-
tive 
V, which correspond, respectively, to doping of elec-
trons and holes in bilayer graphene.

From the transmission and reflection data, we extracted
the optical conductivity.34,44,47,48 The dominant feature in the
conductivity spectra is a strong peak at ��3200 cm−1 �see
Fig. 4�c��. Below the main peak, we observed a broadened
threshold feature, which shifts systematically with 
V. The
most intriguing observation is again the electron-hole asym-
metry in the optical conductivity. For instance, the frequen-
cies of the main peak in Re ���� and its voltage dependence
are noticeably different for electrons and holes �see Fig.
4�c��. Also, while the peak is quite symmetric at large posi-
tive voltages, at high negative 
V, it is not. The most prob-
able reason is the existence of a secondary peak at a slightly
larger � �see below�.

On the theory side, we calculated �, T, and R, using the
SWMc constants and � as adjustable parameters. Results for
the conductivity are shown in Fig. 4�b�. The reflection and
transmission are plotted in Fig. 3. The calculational param-
eters were adjusted to reproduce the frequency positions and
widths of the main features of the experimental data. Inter-
estingly, in this way of fitting, it was not possible to achieve
an equally good agreement for the vertical scale of the ob-
served features. Still their qualitative trend as a function of

V is reproduced well.

Both in experiment and in calculations the carrier concen-
trations are always smaller than the characteristic value n0
given by

n0 =
�1

2

�2v2 = 3.7 � 1013 cm−2. �1�

Here and below we assume that �0=3.0 eV, which corre-
sponds to v= �3 /2��0a /�=1.0�108 cm /s. �Based on other
results in the literature, this value should be accurate to about
10%.� At concentrations �n�	n0 the high-energy bands 1 and
4 have no free carriers and Re ���� has a pronounced peak
at ��3200 cm−1. As explained above, this feature corre-
sponds to transition between band pairs that are nearly par-
allel: bands 3 and 4 for �
0 or bands 1 and 2 for �	0 �see
Fig. 1�.

The evolution of the infrared response with Vg can be
understood as follows. As the gate voltage deviates further
away from VCN, the electron concentration

n = Cb
V/e �2�

and the chemical potential � increase by the absolute value.
Here Cb is the capacitance between the bilayer and the gate.
As a result of an increased �n�, the peak becomes more pro-
nounced. Simultaneously, near the higher-frequency side of
the peak a depletion of conductivity develops. One can say
that the optical weight is increasingly transferred from the
high frequencies to the �1 peak. Larger conductivity is di-
rectly associated with decreased optical transmission. There-
fore one observes an increasing dip in the transmission near
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FIG. 4. �Color online� �a� and �b� theoretical and �c� experimental results for the conductivity Re �, in units of �0=e2 /�, as a function
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�1 and a higher transmission at higher � �see Fig. 3�. Similar
features appear in the reflection but they are more difficult to
interpret as they are also affected by Im ����.

Very important for our analysis are the aforementioned
small shifts in the position of the �1 peak as a function of 
V.
Within the SWMc model, their origin is as follows. In the
absence of broadening, the peak arises from the absorption in
the range of frequencies E2	��	E3 �see Figs. 1 and 2�.
Since the optical weight at E3 is higher, the conductivity
peak occurs at energy E3. However, if the broadening is large
enough, the optical weight becomes distributed more uni-
formly and the peak position moves to the midpoint of E2
and E3 �see Fig. 5�. Energies E2 and E3 themselves vary with
the gate voltage �or n�. For positive 
V �positive n�, E2
�E2

+ is the energy difference between the bands 3 and 4 at
k=0. The energy E3�E3

+ is the corresponding difference at
k=kF, where

kF = sign�n�	��n� �3�

is the Fermi momentum. For 
V	0 we denote E2 and E3 by,
respectively, E2

− and E3
− and they are computed using the

bands 1 and 2 instead of bands 3 and 4.

From the band structure,28,29 we can find the following
approximate expressions valid for n�n0:

E2
� 
 �1 −

V

2
� � , �4�

E3
� 
 �1	1 +

2��n�
n0

−	V2

4
+ ���1n

n0
�2

� �

� 2�2v4�1 + ��
��n�
n0

. �5�

Here V=V�n� as well as the chemical potential �=��n� are
determined self-consistently by the electrostatics of the
system45 �see Sec. III�. These equations indicate that the pa-
rameters primarily responsible for electron-hole asymmetry
are �4 and �.

Parameter � is the difference of the on-site electron ener-
gies of the A and the B sites8,9 �the stacked and unstacked
sublattices, respectively; see Fig. 1�a��. It has two effects:
first, it lifts the k=0 energy for bands 1 and 4 and second, it
adds a k-dependent perturbation to the two-band dispersion.
Parameter v4=v�4 /�0 of dimension of velocity characterizes
hopping between a stacked atom and its three unstacked
neighbors of its stacking partner. It also introduces difference
between the valence and conduction bands. To the leading
order in k, this hopping shifts the two middle bands �2 and 3�
upward by a term proportional to v4k2 and shifts the two
outer bands �1 and 4� downward by the same amount. These
effects of � and v4 are illustrated in Fig. 6.

Additional electron-hole asymmetry can in principle come
from extrinsic sources, e.g., charged impurities that can be
present on or between the layers. Besides creating a finite
VCN, these charges also move V=0 point away from the
charge-neutrality point n=0. To the first approximation,45

this introduces an offset of the interlayer bias: V�n�→V�n�
+V0. However, our calculations suggest that for reasonable
V0 this effect has a smaller influence on the electron-hole
asymmetry of the optical response than � and �4.
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Based on the above discussion, we can predict qualita-
tively how the position of the main conductivity peak should
vary as a function of 
V. For example, on the electron side,
and for v4
0, the peak should move to lower frequencies as

V increases. Alternatively, this can be seen from Fig. 6. The
top two bands move closer to each other as k=kF increases.

For the quantitative analysis, we use a full numerical cal-
culation of � and T, which is discussed in Sec. III below. It
demonstrates that for the case of small � the energy E3 is
indeed in a good agreement with the computed peak position
�0. However, the broadening observed in experiments34–36 is
appreciable, in which case the formula �0= �E2+E3� /2 is
more accurate. Of course, for fairly large � other nearby
transitions E1 and E4 start to influence the line shape of the
main peak. This is especially noticeable on the hole side,
where the E4 peak is right next to the main one. In the cal-
culations this two-peak structure is unmistakable �see Fig.
4�b��. In the experiment, where the main peak is for some
reason strongly enhanced compared to the calculation, the E4
peak is somewhat disguised. As pointed out by Kuzmenko et
al.,36 the difference between E4 and E2 can in principle pro-
vide a direct spectroscopic measurement of the energy gap V.

For detailed comparison with experiment we use our nu-
merical results rather than Eqs. �4� and �5�. Fitting them to

the data �see Fig. 5�, we have obtained estimates of �1, �4,
and � listed in Table I. This fitting procedure proved to be
very straightforward. For example, � is determined mostly
by the splitting of the peak positions on the electron and the
hole sides of the charge-neutrality point. Parameter �1 is es-
sentially the average of the two. Finally, �4 controls the slope
of the �0�Vg� curves away from VCN. Therefore, all these
parameters can be uniquely determined.

In Table I we also list SWMc values suggested in prior
literature. They mainly agree with ours for the principal
SWMc parameters �0 and �1 but show some deviations for
the more subtle quantities �4 and � we have been discussing
here. Possible reasons for these differences are given in Sec.
IV.

III. DERIVATION

A. Band structure

The bilayer is two monolayers stacked together �see Fig.
1�a��. In the bulk graphite the preferential stacking is the AB
�Bernal� one such that only one sublattice of each layer is
bonded to each other. In order to achieve agreement with
experiments,34 we have to assume that in the bilayer the
stacking is the same. We use the basis 
�A1 ,�B1 ,�B2 ,�A2�,
where the letter stands for the sublattice label and the number
represents the layer index. In this basis the SWMc tight-
binding Hamiltonian for the bilayer becomes29

H =�
−

V

2
+ � � �1 − v4��

�� −
V

2
− v4�� v3�

�1 − v4�
V

2
+ � ��

− v4� v3�� �
V

2

� , �6�

where �=−i�kx+ iky� and �kx ,ky� is the deviation of the qua-
simomentum from the K point.

Given V, it is easy to obtain the four band energies ���k�
and the corresponding eigenstates �� ,k� numerically. How-
ever, as mentioned in Sec. II, V should be determined self-
consistently as a function of Vg or, equivalently, the total
carrier concentration n. The algorithm for doing so is given
in Sec. III B.

B. Electrostatics

As discussed in the literature,29,45 the electric field of the
gate has two major effects on the bilayer graphene. First, it
modifies the bands by introducing a potential difference be-
tween the layers and as a consequence opens up the energy
gap. Second, it induces charge carriers. Electric field of the
charged impurities can play a similar role: it creates a layer
asymmetry V0 and opens a gap at the charge-neutral point
much like an external gate. But the more important effect of
the impurities is presumably the broadening of the electron
energy states, which we describe by a phenomenological
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FIG. 7. �Color online� �a� Interlayer bias V as a function of total
density n. Three sets of curves correspond to �from top to bottom�
V0=0.1�1, 0, and −0.1�1. The dashed lines are computed from Eq.
�12�. �b� Chemical potential vs n for V0=−0.1�1.
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constant �. For example, if the impurities are distributed
symmetrically between the two layers, then V0 is zero but �
is still finite. We assume � to be real and independent of
energy, momentum, or a band index. This is certainly a very
rudimentary treatment of disorder compared to, e.g., self-
consistent schemes.29,40,49 However, since the source of dis-
order in graphene is still debated, we think that this simple
approach is adequate for our purposes as long as � is treated
as another adjustable parameter.

To compute V�n� and ��n� we set up a system of equa-
tions similar to those in Refs. 28 and 45. These equations
capture the dominant Hartree term of the interaction but ne-
glect exchange and correlation energies.11 The first equation
is �cf. Eq. �2��

n = nt + nb = Cb
V/e , �7�

where nt and nb are the carrier concentrations of the top and
bottom layers and Cb is the capacitance to the gate. Second,
the electrostatic potential difference between the two layers
V is given by

V =
4�e2

�
�nt − nb�c0, �8�

where � is the dielectric constant and c0 is the distance be-
tween the layers. Next, the Hamiltonian and hence the wave
function and the layer densities nt and nb depend on V.
Therefore the quantities V, nt, and nb must be determined
self-consistently. If the broadening � is neglected, this can be
done analytically in the limit V, ���1, which gives V

V�n ,V0�, where28,45

V�n,V0� =
X�1 + V0

�−1 + �X� − 1
2 ln�X�

, X =
�n

n0
, �9�

n0 is defined by Eq. �1�, and ��e2c0n0 /���1 is the dimen-
sionless strength of the interlayer screening. Using the typi-
cal parameter values, one estimates45 ��1, and so the inter-
layer screening is significant.11,45

For experimentally relevant broadening ��0.02�1, the
approximation leading to Eq. �9� is no longer accurate.
Therefore, we computed the dependence of nt and nb on V
numerically as follows. We first define the retarded Green’s
function GR by the analytical continuation GR���=G��→�
+ i�� of the following expression:

G��� = �
�=1

4
1

� − ���k�
��,k���,k� . �10�

Then we compute nt from

nt = −� d2k

�2��2�
−�

� d�

�
Im�G11

R �k,�� + G22
R �k,��� �11�

using numerical quadrature. Similarly, the formula for nb is
obtained by replacing G11+G22 with G33+G44.

The system of nonlinear equations �7�, �8�, and �11� is
solved by an iterative procedure. For a given chemical po-
tential � we start from some initial guess on V. Then we
diagonalize the Hamiltonian and compute GR, nt, and nb.
Substituting them into Eq. �8�, we get the value of V for the

next iteration. �Actually, we use not this value directly but a
certain linear combination of the new and old V to achieve
convergence.� The iterations terminate when the values of V
changes by less than a desired relative accuracy �typically
10−5�. The results of these calculations are in a good agree-
ment with Eq. �9� for �=0, and so are not shown. On the
other hand, the results for �=0.02�1, which are plotted in
Fig. 7, appreciably deviate from Eq. �9�. The agreement
greatly improves �see Fig. 7� if instead of Eq. �9� we use, on
heuristic grounds, the following formula:

V�n� = V�n�,V0� − V�n�,0� , �12�

n� = sign�n�	n2 + n�
2 , n� = sign�n�

2�n0

��1
. �13�

C. Dynamical conductivity

The above procedure enables us to compute V and n for a
given chemical potential �. With the former determining the
Hamiltonian and therefore its eigenstates, and the latter de-
termining their occupancy, we can now compute the dynami-
cal conductivity by the Kubo formula50

�xx��� = i
�xx

R ��� − �xx
R �0�

� + i0
, �14�

where the polarization operator �xx
R ��� is given by

�xx
R ��� = ig

e2

�2� d2k

�2��2�
−�

� d�

2�
Tr
vx�GR�k,��

− GA�k,���vx�GR�k,� + �� + GA�k,� − ���� .

�15�

In this equation g=4 is the spin-valley degeneracy of
graphene, vx=�−1�H /�kx is the velocity operator, and GR,A

are the retarded and the advanced Green’s functions. Assum-
ing again that the broadening is momentum and energy in-
dependent, these functions are obtained by the analytical
continuation of G in Eq. �10�: GR,A���=G��→�� i��. After
some algebra, we find

�xx
R ��� = ig� e

�
�2� d2k

�2��2�
�,�

�M���k��2 �
�,�=�1

�K����k�

− i��,���k� − �i� + ���� , �16�

where M���k�= �� ,k�vx�� ,k� are the transition matrix ele-
ments and the function K is defined by

K�z1,z2� =
ln�� − z1� − ln�� − z2�

2��z1 − z2�
�17�

with the branch cut for ln z taken to be �−� ,0�.
For vanishing V and � the conductivity can be computed

in the closed form �see Appendix B�. For other cases, we
evaluated it numerically. The results are shown in Figs. 2 and
4. To demonstrate agreement with previous theoretical
calculations,28,29,37,39 we present ���� computed for a very
small broadening � in Fig. 2. In this case one can easily
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identify all six transitions. As explained above, the sharp
features at ��3200 cm−1 are due to the high optical density
of states at energies E2	��	E3. The other prominent fea-
ture at �=0 is the intraband Drude peak. �Its height is re-
lated to the transport mobility.� In Fig. 4 the calculation is
done for much larger � to match the experimental data. This
figure has been discussed in detail in Sec. II.

IV. DISCUSSION

In this paper we presented a joint experimental and theo-
retical study of the infrared response of a bilayer graphene.
Our results demonstrate a complex interplay among various
interband transitions and their disorder-induced broadening.
Nevertheless, by means of a careful analysis, we have been
able to explain the majority of the observed features within
the conventional SWMc model. The corresponding SWMc
parameters are given in Table I, together with their estimated
uncertainties. In particular, our �1 should have a very high
accuracy, about 100 cm−1, i.e., 3%. The uncertainty in �1
comes predominantly from an unknown systematic error that
we make by neglecting the renormalization of the spectrum
by scattering processes. Since we assume that the imaginary
part ��65 cm−1 of the electron self-energy due to scattering
is constant, its real part has to vanish by the Kramers-Krönig
relations. In fact, this real part, which is generally finite,29

can shift the observed transition frequencies by an amount
that scales with �.

Let us now compare our SWMc parameters with those
found in previous work on bilayers and bulk graphite. For
the bilayer case there is at present only one other experimen-
tal determination10 of � j’s. From Table I we see that the
difference between our and their values is primarily in �1.
Actually, our SWMc parameters can describe the Raman
data equally well51 as those given in Ref. 10. Our parameter
values have smaller estimated errors and should be consid-
ered as more accurate.

In comparison with bulk graphite, the strongest discrep-
ancy is in the value of �. The difference is significantly
larger than the uncertainty of �graphite quoted in the early12,13

and the recent experimental works,16 which make a strong
case that �bilayer differs from �graphite both in sign and in
magnitude. To judge the true significance of this result, one
should recall that the physical meaning of �bilayer is the dif-
ference in the onsite energies of the A and B sublattices.8

However, in graphite the role of the same quantity is played
not by � but by the linear combination9

�graphite� � �graphite − �2 + �5. �18�

For the sake of convenience, let us set �2=�5=0 in the bi-
layer, so that the A-B energy difference is equal to �� in both
materials. Taking the most commonly used12 parameter val-
ues for graphite, we arrive at the remarkable empirical rela-
tion

�graphite� � 37 meV � 2�bilayer� , �19�

which is much easier to interpret. Indeed, the physical origin
of �� is the short-range �exponentially decaying with dis-
tance� repulsion due to exchange and correlation effects be-

tween the electron states of the stacked atoms. �Neither Cou-
lomb nor even the van der Waals interaction has short
enough range to effectively discriminate between the two
sublattices52,53 given the relatively large interlayer distance.�
Since in the bilayer each A atom has a single stacking partner
while in the Bernal graphite it has two of them, Eq. �19� is
exactly what one would expect. More precisely, it is ex-
pected if the interlayer distances in the bilayer and in the
graphite are nearly the same. The validity of Eq. �19� can be
considered as an experimental evidence that this is indeed so.

Another SWMc constant, which may seem to be different
in the bilayer and the bulk graphite is �4. As mentioned in
Sec. I, this is one of the parameters that in the past have been
difficult to determine very accurately. Our estimate of �4 can
be defended on the grounds that �i� it agrees with the Raman
experiments10 and �ii� it is comparable to the accepted value
of �3. These two parameters describe hopping between pairs
of atoms at equal distances in the lattice �see Fig. 1�a�� and
theoretically are not expected to be vastly different from
each other. Large difference of �4 between the bilayer and
the bulk graphite is not expected either. Indeed, even when
they disagree about the order of magnitude �or sign� of �, all
electronic structure calculations to date find that �4��3 and
are of the same order of magnitude in the two systems �see
Table I�.

Parameter �3 itself cannot be reliably extracted from the
experimental data34 we analyzed here. At the relevant carrier
concentrations the main effect of �3 is to produce a weak
trigonal warping of the band dispersion.12 This warping av-
erages out over the Fermi surface and so has an effect similar
to the broadening �. It makes the �1 conductivity peak more
symmetric and shifts it toward the midpoint of E2 and E3,
i.e., to slightly lower frequencies �cf. Figs. 4�a� and 4�b��.
Thus, it is difficult to separate the effect of �3 from the
broadening due to disorder.

Regarding the latter, the dc mobility that we find from our
numerically computed ��0� using �=0.02�1�8 meV is �
�3900 cm2 /V s. This is close to the transport mobility typi-
cal for bilayer graphene, supporting our interpretation that �
arises mainly due to disorder.

Concluding the paper, we wish to draw attention to sev-
eral features of the experimental data that are not accounted
for by our model. One of them is an unexpectedly large
amount of the optical weight in a range of frequencies below
the �1 peak. It is present between the Drude peak and 2�,
i.e., twice the chemical potential. For the chosen �, our cal-
culation predicts Re �����0.02e2 /� at such � �see Fig. 3�,
whereas the measured value is several times larger.34 This
extra weight is present also in the monolayer graphene in the
same range of frequencies.47 A related issue is a very gradual
rise of Re ���� around the point �=2� compared to a sharp
threshold expected theoretically. These features can be in
part due to electron-phonon interaction49 or midgap
states49,54 but other effects seem to be involved as well.

One very simple explanation would be to attribute both
the broadening of the �=2� threshold and the extra weight
at �	2� to long-range density inhomogeneities in the
sample. They can be caused by charge impurities and rem-
nants of the photoresist used in the sample processing. The
presence of such inhomogeneities would modulate the local
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chemical potential, and so in the infrared response one would
see a certain average of the ���� taken at different 
V. We
illustrate this argument by calculating the arithmetic mean of
����’s for positive �negative� 
V and superimposing the re-
sults �shown by the dashed lines� on the ���� traces for

V= +50 V �−50 V� in Fig. 4�b�. Such averaged conduc-
tivities indeed resemble the experimental data �Fig. 4�b��
more faithfully.

Another discrepancy between the experiment and the
present theory is the line shape of the �1 peak. By varying �,
we can fit either the width or the height of the peak but not
both. For example, in Fig. 4, where we chose to fit the width,
the measured height of the peak is sometimes nearly twice
larger than the theory predicts. The extra optical weight of
the peaks appears to have been transferred from their high-
frequency sides, which are suppressed in experiment com-
pared to the calculations. These line-shape differences are
significant enough to make us think that some essential phys-
ics is still missing in the simple single-particle picture pre-
sented in this paper. We speculate that including many-body
effects may be truly necessary for bringing theory and ex-
periment to a better agreement.
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APPENDIX A: REFLECTION AND TRANSMISSION

To compute the transmission coefficient T and the reflec-
tion coefficient R we follow the standard procedure.55 In gen-
eral, the result depends on the angle of incidence and on the
polarization of light. Abergel and Fal’ko56 derived the for-
mulas for R and T for the S polarization where the electric
field is perpendicular to the plane of incidence �and parallel
to the sample surface�. We reproduce them here with a slight
change in notation as follows:

R = �−
Cn1 cos �1 − D�cos �0 − 4���
Cn1 cos �1 + D�cos �0 + 4���

�2

,

T = �−
2 cos �0n1 cos �1n2 cos �2

Cn1 cos �1 + D�cos �0 + 4���
�2

, �A1�

where A, B, C, and D are given by

A = cos �2 sin 
2 + in2 cos �0 cos 
2,

B = i cos �2 cos 
2 + n2 cos �0 sin 
2,

C = An1 cos �2 sin 
1 + iBn2 cos �1 cos 
1,

D = iAn1 cos �2 cos 
1 + Bn2 cos �1 sin 
1. �A2�

In Eqs. �A1� and �A2�, the index j=0,1 ,2 represents
vacuum, SiO2, and Si layers respectively, nj are the index of
refraction of each layer, and � j are the angles the light ray
makes with the surface normal in each layer. They satisfy
Snell’s law nj sin � j =const. Finally, 
 j =kLj /nj is the phase
the light picks up as it makes one pass across the layer of
thickness Lj.

For the other, P polarization, where the electric field is not
exactly parallel to the surface of the sample, we find a dif-
ferent expression such as

R = �Cn1 cos �0 − D cos �1�1 − 4�� cos �0�
Cn1 cos �0 + D cos �1�1 + 4�� cos �0�

�2

,

T = � − 2 cos �0n1 cos �1n2 cos �2

Cn1 cos �0 + D cos �1�1 + 4�� cos �0�
�2

. �A3�

For this polarization the conductivity enters R and T multi-
plied by the cosine of the angle of incidence, i.e., its effect is
reduced. In our experiments, we typically have �0�30°, and
so this reduction is quite small. Its role is further diminished
by the presence of both polarizations in the infrared beam.
Thus, we decided not to include it in the analysis and do all
the calculation assuming the S polarization only.

APPENDIX B: CONDUCTIVITY OF AN UNBIASED
BILAYER AT VANISHING BROADENING

The conductivity for the case �=V=0 was computed pre-
viously in Refs. 37 and 56. In our attempt to reproduce their
formula we discovered that it contains a typographical sign
error.57 For future reference, we give the corrected expres-
sion below.

In the limit of zero broadening �→0, Eqs. �14�–�17� re-
duce to the following expression for the conductivity:

���� =
ge2v2

2i��
P�

0

� d�

�

��M���2

�2 − �� + i0�2�
j

kj���kj���� ,

�B1�

where P means principal value and the integration variable
�= ���−��� is the energy difference between two states. The
sum in Eq. �B1� is over all values of momentum kj��� of
which two states differing in energy � exist. For V=0 where
the matrix elements M�� take a simple form, the integration
over � in Eq. �B1� can be done analytically. The result can
be written as a sum of three terms,

����
�0

= �̃0��� + �̃�1
��� + �̃2�1

��� , �B2�

where �0=e2 /� is the unit of conductivity, �̃0 is contribution
from transitions between bands 2 and 3 that turn on at �
=0, �̃�1

is contribution from transitions between bands 1 and
3 and bands 2 and 4 that turn on at �=�1, and �̃2�1

is
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contribution from transition between bands 1 and 4 that turn
on at �=2�1. They are given by

�̃0 =
g

8
�1

2

� + 2�1

� + �1
−

i

�

��1

�1
2 − �2 ln��

�1
�� , �B3�

�̃�1
=

g

8
� �1

2

�2��� − �1� +
i

�
�2�1

�
−

�1
2

�2 ln��1 + �

�1 − �
��� ,

�B4�

�̃2�1
=

g

8
�1

2

� − 2�1

� − �1
��� − 2�1�

−
i

�
�1

2

�2 − 2�1
2

�2 − �1
2 ln� 2�1 + �

2�1 − �
�

+
1

2

��1

�2 − �1
2 ln� 4�1

2 − �2

�1
2 ��� , �B5�

where, for ease of notation, � stands for �� and g=4.
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